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ABSTRACT

The derivation of characteristic profiles for the sound speed is
discussed and a classification system introduced. The system com-
prises 32 types of sound profiles with subsequent division into three
groups, namely without and with returning rays and with focusing.
The idealized 32 prototypes of the classification system are based on
the percentage reduction for orthogonal polynomials and the sound
speed profiles are classified by utilization of the maximum relation-
ship with the prototypes.

The types show significant relationship with acoustic focusing
and display practically no seasonal, azimuthal, or climatic variation
for focusing. Therefore, seasonal, azimuthal, and climatic changes
are caused by the occurrence of types. These seasonal, climatic,
and azimuthal fluctuations of the types are presented.
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1. Introduction

The propagation of acoustic noise, created during static test
firings of big space boosters, and the radiation of high acoustic energy
in the vicinity of static test facilities have given rise to new studies in
this relatively well established field of physics. The problem of pre-
dicting days in which the atmospheric conditions are favorable for
creating high acoustic energy in the surroundings of test facilities is
of special interest,.

Although numerous prediction schemes can be developed, based on
a variety of different principles, a classification system for the sound
speed profiles can be a reasonable basis for the study of the relation-
ship between acoustic parameters and the sound speed profiles. The
classification system further permits the investigation of the interaction
between atmospheric and sound speed profile and thus promotes our
knowledge and understanding of the acoustical wave propagation as
influenced by the weather situation.

Therefore, an attempt is made to introduce a workable scheme
for classifying the sound speed profile and for studying their relation-
ship with some acoustic parameters. In summary, a system of 32
types of sound speed profiles, with subsequent division into three
groups (derived from their relation with wave propagation), can ade-
quately describe the variety of profiles.

2, Classification of the Sound Profile

The method described later in this report could be employed
for any type of sound speed profile from the ground to any selected
altitude. Since the application of the classification system in our case
was primarily intended to be for wave propagation in the vicinity of
the Huntsville, Alabama, test facility of the Marshall Space Flight
Center, National Aeronautics and Space Administration, the classifi-
cation of the sound speed profile in the first 3 kilometers of the atmo-
sphere was considered sufficient. Thus, the later established sample
and the profiles include only the sound speed in the first 3 kilometers.

Grouping of sound speed profiles by other authors exists. Heybey!
has presented profiles in relationship to focusing and returning

rays. Another system was used by Perkins.*?

Perkins employs five
basic types of sound profiles derived for their association with acoustic
intensity. Although his system is self-consistent and serves his purpose

adequately, it is not diversified enough to fit our goal. In Appendix B



of Perkins' report, ¢ 32 cases are illustrated. Further classification
in his method is done by subjective judgment. This is hardly possible
for a data sample containing about 250, 000 sound speed profiles as
employed in this investigation. Thus, other ways had to be invented
whereby classification could be established by machine methods.

A certainly interesting scheme was delineated by Lund? although
it was primarily derived to classify weather situations. He selects a
first weather situation and places all other situations into the same
class if the linear correlation coefficient to this first prototype is
larger than 0.70. Thus, he eliminates all similar situations from the
material and starts with a new prototype. The procedure is repeated
until all situations are classified.

This idea has certain potential, although some objection can be
made against the selection system of Lund's weather situation proto-
types. It will be proved below that his system is based upon a random
selection and that a systematic selection of prototypes is possible.
The systematic scheme has been engaged later in the selection of
the sound speed profile types.

Explaining the systematic scheme, one may go back to the linear
correlation coefficient, ryxvy, which may be expressed by

Cov
- . 1
TXY T sxoy (1)

o denotes the respective standard deviation of the elements X and Y
and Cov stands for the covariance, which may be expressed by

T(X; - A (Y - B

Cov = N . (2)

Ao and By represent the respective mean values of the elements Xj
and Y:, N the number of observations. If it is possible to express the
elements X; and Yj by orthogonal polynomials: such is the case for the
sound speed profile from surface through 3 kilometers altitude, then

Xi - A, becomes

Xi - AO = Al (‘bli + AZ 1)2'1 + A3 :1)3'1 + ... Anrbﬂi' (3)
Analogously,
Yj - Bo = B1¢1j t By b5 + By ¢3j t ... Bmémj- (4)




$; denotes orthogonal polynomial functions, Ap and B, coefficients.
Since the input X; and Yj are sound speed profiles to be correlated,
they can be brought into the same format, thusi = jand m = n. This
leads to a covariance

Cov = %ZIAIBI $31 F Ay B, 9% + ... ApBn o] (5)
with

Tbni ki = 0 for n # k. (6)
Further,

1 2 = 2

N Zd)ni Uq)n (7)

and finally, the correlation coefficient

'xy = Tx oy U ' oy (8)

2 2
Arl Gd)
2 n
Zox = - (9)
a
X
with
Yz%, = 100 t (9a)
axX = percent, a

one may express the correlation coefficient by

rxy = |Zix 0 Ziy too- Zpx Zay| (10)

or,

TXY ¥ 2%nX Zay (10a)

In Equation (10a), Z,y represents the prototypes or idealized types of
any classification scheme and the Z,,x denotes the element to be classi-
fied, which in this case is the sound speed profile. The correlation
coefficient, ryvy, must be computed for all idealized types and the



maximum correlation determines the class into which the sound speed
profile is grouped. Employing the maximum correlation is the first
deviation from Lund's? method.

A second change from Lund's? method is the systematic spacing
of the idealized types. In effect, the Z,v are prototypes in an
n-dimensional system and can be spaced randomly or systematically.
This will influence the association of the Z x with the Z v, as may be
demonstrated in the following example.

Assume the main interest is in Z, and Z, and all remaining terms
are summarized under Z;. Then, a two-dimensional system for Z,
and Z, evolves as illustrated in Figure 1. Itis irrelevant whether the
class division employs equal intervals in a linear or quadratic scale.
The latter offers the advantage that the total percentage reduction can
be easily added up and a diamond shaped plane develops with classes
as displayed in Figure 1. The sign is taken from the coefficients
(Equation 10). Although the association with the prototypes was later
performed for the individual profile, for proving our point, it can be
assumed that the profiles to be classified can be represented by the
midpoints of the class fields. For example, assume that there exists
only one prototype, ZfY =100 wich%Y = 0, which is identified with
the uppermost dot in Figure 1. Under a selection scheme of a correla-
tion coefficient of 2 0.7, the top five lines would be associated with
this prototype and eliminated from the material.

Equally spaced prototypes, as indicated by the dots in Figure 1,
are introduced and the maximum correlation for the midpoint of the
class fields is selected to indicate the association. Then, a system of
divisions arises as indicated by the heavy lines in Figure 1. It should
be noticed that the idealized prototypes contain no Z; in this scheme
and, therefore, the correlation coefficient and the association with
the prototypes are determined by ZlX and Z?_X only.

It is obvious that in a system where the prototypes are introduced
subsequently and not simultaneously (or a priori), the elements to be
classified are not grouped by this maximum correlation. (The first
five lines of class fields would have been eliminated by the first pro-
totype, before one goes to the next one.)

Further, it is evident that random spacing of the prototypes will
result in inadequate coverage of the total Z,, Z, plane. Thus, unneces-
sary prototypes must be introduced merely to classify remainders.
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The example could be expanded to include more than the first three
polynomial terms. Similar conclusions than obtained for the presented
example are valid.

The fact that no realistic profiles may arise could be brought up as
an objection to a systematic spacing of prototypes. This would be
factually correct, if the prototypes would be considered final. Since
the prototypes are used to separate the material into classes only, they
serve a similar purpose as a class division for 2 frequency distribution.
Practically nobody would base such a class division on random limits.
Empirical data can then be derived for the separate groups and realistic
profiles can then arise.

Although the author has utilized in the later part equally spaced
prototypes as outlined in Figure 1, there virtually exists an infinite
number of possibilities to systematically arrange for schemes of pro-
totypes. This is equivalent to choosing the initial class of a system of
class divisions for a frequency distribution. The present system
proved quite convenient and efficient.

Figure 2 illustrates an example for an empirical frequency distri-
bution in the Z,, Z, plane. The majority of empirical profiles in the
groups will then determine the actual characteristic profile.

Figure 3 displays in the layout of the Z,, Z, plane the placing and
appearance of the later employed prototypes. Types 1, 2, 11, 12, and
21 through 24 are connected with Z, and Z, only and are individual
types in their respective boundaries. All other types are subdivided by
higher order coefficients and appear only as an image in the 2, , Z,
plane. The prototypes are described in detail in Paragraph 3 of this
report.

3. Types of Sound Speed Profiles and Relation to Focusing

The establishment of a system of prototypes has been discussed
in Paragraph 2 of this report. The respective Z;Y values for the pro-
totypes and the numbering of types are contained in Table I. Individual
terms of orthogonal polynomials are types 1 through 6 with positive
coefficients and 11 through 16 with negative coefficients. Types 21
through 32 are mixtures involving Z,vy, Z,vy, and Z;y with the respec-
tive signs. In types 40 through 46, with mixtures containing higher
orders than Z;vy, the frequency of occurrence was low and thus associ-
ation was not separated by sign. The subdivision into four parts such
as in types 21 through 24 was omitted. For the investigation of the
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Table I. Idealized Tyves
Type 2% 2} 72 72 2 72
1 100
2 100
3 100
4 100
5 100
6 100
11 -100
12 -100
13 -100
14 -100
15 -100
16 -100
21 50 50
22 50 - 50
23 - 50 - 50
24 - 50 50
25 50 50
26 50 - 50
27 - 50 - 50
28 - 50 50
29 50 50
30 50 - 50
31 - 50 - 50
32 - 50 50
40 50 50
41 50 50
42 50 50
43 50 50
44 50 50
45 50 50
46 50 50
6
50 Y,z <0.60
1
51 Others




250, 000 profiles from the climatic regime of the Southeast of the
United States this was quite satisfactory. It may not be permissible
on a world-wide basis, if frequency for types 40 through 46 warrants
a subdivision.

Type 50 is a collection of the remaining profiles, where the max-
imum correlation coefficient to any of the preceeding prototypes is
less than 0.70. It was derived by classification of profiles into the
31 types introduced as numbers 1 through 46 and then printing out the
remaining profiles whose maximum correlation was less than 0. 70.
It was discovered that these were profiles whose first six polynomial
terms rendered a percentage reduction of less than 60 percent. Although
a type number 51 was reserved for cases not yet covered, none appeared.

The introduced system of classification has several advantages.
First, instead of correlating the individual points of the sound speed
profile with the individual points of the prototype (idealized types),
only the percentage reductions Z,x need to be multiplied. This
reduces the computer time for classification considerably. Second,
the profile is associated with the type by its maximum correlation.
No other prototype would fit the profile better. Third, the correlation
with the prototype is always > 0.70 except for type 50. The latter is
a relatively small group, where higher order terms than the sixth
power may prevail. It includes further profiles with no dominance of
any term. In more than 90 percent of the profiles, the maximum
correlation coefficient is over 0.90. More details are presented in a
forthcoming report.® In essence, the actual profiles never fall 100
percent in line with the prototypes, but are very close. This can be
interpreted as the actual profiles consisting of predominant terms
with some perturbations. Since the idealized type does not contain
perturbations, the classification is based upon the dominant feature
of the profiles.

It proved further advantageous in application to sound propagation
to establish for the various types three notable subgroups, although
not all three subgroups can be found in every type (Table II). These
subgroups were selected for their property with respect to acoustic
wave propagation. As described in detail in a recent report,®> the first
group does not render returning sound rays from the atmosphere to the
ground. In the second group, returning sound rays can be expected
but no focusing will happen. The third group comprises profiles with
chances of focusing. Focusing is used as a tool to identify areas with
generally high acoustic intensity. The objective determination by com-
puter methods has been thoroughly described by the author in a recent
report. 5

10




Table II. Survey of Focusing Per Profile Type for the Climatic Regime
in the Southeast United States

Profile Profile Groups Focusing | Focusing Type
Types | Nonreturning| Returning | B of B of Type |Frequency

1 0 - 100 100 86 86. 0 5.9
2 62 38 29 18 5.0 1.8
3 0 _ 100 46 57 26.0 0.3
4 37 63 63| = 41 26. 0 0.1
5 0 100 45 5 2.0 0.0
6 19 81 81 61 49.0 0.0
11 67 33 5 69 4.0 63.1
12 0 100 86 84 73.0 2.6
13 63 37 35 36 12.0 0.8
14 0 100 37 25 9.0 0.1
15 49 51 51 68 35.0 0.0
16 6 94 69 21 15.0 0.0
21 1 99 99 45 45.0 1.4
22 0 100 97 90 87.0 1.9
23 4 96 59 73 43.0 4.7
24 86 14 1 49 0.3 4.6
25 0 100 95 51 48. 0 0.2
26 4 96 96 64 61.0 1.5
27 91 9 3 10 0.3 1.9
28 1 99 25 81 20.0 1.3
2 2 98 74 28 21.0 0.2
30 88 12 9 26 2.0 1.5
31 5 95 94 64 61.0 0.4
32 0 100 - 43 76 32.0 1.1
40 40 60 30 54 16. 0 0.9
41 24 76 35 50 18.0 0.2
42 9 91 64 66 42.0 1.1
43 14 86 66 43 29.0 0.3
44 24 76 41 56 23.0 1.4
45 15 85 66 51 34.0 0.3
46 22 78 49 58 29.0 0.4
50 7 93 76 34 26.0 0.0

Il



The frequency distribution over 250, 000% sound speed profiles by
types and groups for the climatic regime in the Southeast portion of the
United States is presented in Table II. The first three columns next
to the profile types represent the three groups as mentioned above with
the difference that in the middle column all profiles with returning rays
and with chances of focusing are combined. The third column lists
the profiles with chances of focusing alone. If the frequency of pro-
files with returning rays only without chances of focusing is desired,
the reader may substract column 3 from column 2.

The fourth column under heading ""Focusing of B' contains the
fraction of B profiles in percentage, when focusing occurred. Certain
types display high chances of focusing for profile group B, others have
lesser chances. The final two columns delineate information of focusing
per type and the overall type frequency.

The result has been transferred into Figures 4 through 6, which
picture 27 of the idealized types and associate the frequency of occur-
rence with them. The first line represents the overall occurrence of
the type within the total material of 250, 000 profiles. The second line
gives the share of B profiles expressed in percentage of the type
occurrence. The frequency of focusing per type can be seen from the
bottom line.

It can be noticed that type 11 appears most frequent (in over 60
percent of the time) and represents the type with little chance of
focusing. If empirical data were perfect and like the idealized type,
no returning rays could be produced. One third of the empirical pro-
files, however, emerge with returning rays. This is caused by the
perturbations.

Type 1 proves as the major type for focusing, again a contradic-
tion to the idealized type. Although returning rays for that profile
type must be expected, a straight linear increase of the sound speed
would not create focusing. Again, the role of the perturbations can
be seen.

These two examples already demonstrate the modification by the
empirical profiles and with it the conversion into significant realistic
types. Itis the empirical profile which determines the profile type

*Sound profiles have been computed for every 10-degree azimuth
for meteorological ascents from Nashville, Tennessee; Huntsville,
Alabama; and Mississippi Test Facility.
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with respect to the acoustical behavior. Thus, the fixed framework
of prototype becomes useful through the association of empirical pro-
files.

To further confirm the significance of the types, a similar statis-
tical survey as in Table Il has been established for a completely dif-
ferent climatic regime, namely Chateauroux in France. Table III
extracts data from this study for comparison between the two climatic
areas. The number of B profiles per type, the fraction of focusing
per B profiles, and the focusing per type compare favorably for all
profile types. Only a few cases of larger deviation can be noticed,
whose frequency of occurrence is very small. Thus, no statistical
significance can be given to those deviations.

It should be stressed that there is a climatic difference between
the two areas. The focusing statistics show considerable change.
This change is generated, however, by the variation of the type fre-
quency and not by different acoustic behavior within the type. Thus,
it may be concluded that the types can be used to adequately express
the acoustical behavior of the atmosphere with respect to focusing and
returning rays.

Figure 7 illustrates the three types with the highest focusing
changes and the three types, when focusing is small. Comparison of
these empirical mean sound speeds with the idealized types of
Figures 4 through 6 reveals that types 12, 22, 24, and 27 are closer
to the ideal model than types 1 and 11. The deviation from the model
type in the lower 1000 meters explains the high chances of focusing.

4. Seasonal Variation of Types and Dif ferences in Azimuth

Paragraph 3 of this report has described the types of sound
speed profiles in the lower three kilometers of the atmosphere and
their relationship to areas of high acoustic intensity (expressed by
focusing). It was explained that focusing per type showed virtually
no seasonal or climatic dependency. The seasonal variation must,
therefore, be achieved by the variation of types with season.

To begin with, Figure 8 displays the seasonal and azimuthal
variation of focusing for Nashville, Tennessee,at 1700 hours local
time. Focgusing exhibits a peak at easterly azimuths and occurs more
frequently in winter. Similar features can be found at Chateauroux,
France (Figure 9). The peak in winter appears at southeasterly
azimuths.

16




Table III.

Comparison of Type Survey Between Southeast United
States and Chateauroux, France

Profile B Profiles Focusing of B Focusing of Type
Type SE US Chat. SE US Chat. SE US Chat.
1 100 100.0 86 84 86.0 84.0
2 29 25.0 18 14 5.0 4.0
3 46 54.0 57 59 26.0 32.0
4 63 65. 0 41 69 26.0 45.0
5 45 33. 0= 5 0% 2.0 0. 0%
6 81 100. 0% 61 50% 49.0 50. 0%
11 5 4.0 69 69 4.0 3.0
12 86 83.0 84 82 73.0 68.0
13 35 33.0 36 41 12.0 13.0
14 37 43.0 25 30 9.0 13.0
15 51 100. 0% 68 100% 35.0 100. 0%
16 69 69. 0% 21 22% 15.0 15. 0%
21 99 99.0 45 49 45.0 49.0
22 97 96.0 90 82 87.0 79.0
23 59 63.0 73 76 43.0 48.0
24 1 0.3 49 33 0.3 0.1
25 95 98.0 51 47 48.0 46.0
26 96 94.0 64 68 61.0 64.0
27 3 2.0 10 10 0.3 0.2
28 25 27.0 81 78 20.0 21.0
2 74 67.0 28 13 21.0- 9.0
30 9 8.0 26 22 2.0 2.0
31 94 96.0 64 73 61.0 69.0
32 43 47.0 76 75 32.0 35.0
40 30 43.0 54 60 16.0 26.0
41 35 36.0 50 56 18,0 20.0
42 64 74.0 66 71 42.0 52.0
43 66 81.0 43 60 29.0 49.0
44 41 41.0 56 51 23.0 21.0
45 66 79.0 51 71 34.0 56.0
46 49 46.0 58 56 29.0 25.0
50 76 67. 0 34 50% 26.0 33. 0%

*Type total is less than 10,

17




ALTITUDE (m)

ALTITUDE (m)

18

HIGH CHANCES OF FOCUSING

TYPE 12 TYPE 22

FOCUSING OF
TYPE B
| 86 %
12 84 %
22 90 %
FOCUSING OF
TYPE 8
1 69%
24 49%,
27 10 %

3000 X
\ .
2500 N A
\ \
2000 M
L]
\/
1500 =
TYPE 1 -mt” ,1
’
1000 .
¢ - /
L
500 > ,/’/
”
‘P
0 L K
332 336 340 344 348
SOUND SPEED (m/sec)
SMALL CHANCES OF FOCUSING
3000
\ \)
2500 N N
N\
TYPE 1l e TYPE 27
2000 .i :
TYPE 24 ’
1500 \\\i'
/
'
1000
\
500 ‘:T" \*\\
\l~\ \
o i En, S
328 332 336 340 344
SOUND SPEED (m/ sec)
Figure 7. Types with High Chances and Low Chances

of Focusing

TYPE
86 %
73%
87 %

TYPE
4%
0.3%
0.3 %




SWIL], [BD20 ‘SINOH 00:.L1

‘sessouua] ‘si[rayseN ‘ynwizy Aq Suisnoo g punog jo sanijiqeqorg ‘g s2andrg
{6sp) HINWIZY
09¢ oge 00¢ 0.2 ove 0132 (o):]] oSl ozl 06 09 o¢ oo
) r rdm et oo
| SSS—— Fyg fn "PY e

m_.l._,.

caseescecnn mw‘_vz_;
....... 1v4
—-—-—Y3INWNS
ONI¥dS

veod

o¢

() 4

09

(%) Allnlavaoud

19



souel ‘Xnoinesleyn ‘ynuwizy Aq 3uisndo punog jo saUIIqeqoid ‘6 2xndi g

(63p) HLNWIZV

o9¢ ose¢ oo¢ 0L2 ove 012 08! 0S| ozl 06 09 o€ )
T 1 o
YINNNS I\ -
Joz =
[o]
C
m
4
O
<
||\ <
YILNIM Hop ©
Jos

20




The high amount of focusing during the winter months compared
with the summer months is reflected in the seasonal variation of the
types. Table IV provides data on the seasonal variation of profile
types for Nashville and Chateauroux. The profile types have been com-
bined into three groups, the first one with significant relationship to
focusing, the second group with significant low focusing frequency.

The remaining types could not be grouped into one or the other with
statistical significance and were put into a third group.

The survey of Table IV indicates a remarked increase of the
focusing types in winter and the reversed trend for the nonfocusing

types.

Climatic differences become apparent in the following. Type 1
contributes most to focusing at Nashville, Tennessee, in winter. In
contrast, types 12 and 23 are dominant for focusing at Chateauroux.

Although the nonfocusing types delineate the same seasonal trend,
no clear climatic difference can be observed. This may be due to the
large amount of profiles in type 11, which outnumbers all the other
types together. Thus, a climatic change in the dominance of the non-
focusing profiles can hardly be expected.

Data presented in Table IV prove, however, that seasonal and
climatic differences are created mostly by the variation of the type
frequency. Likewise, the azimuthal difference is caused by appearance
of differences in the types. As evidence, Table V is disclosed. Only
the summary lines of the combined types as referenced in detail in
Table IV are given. Table V contains the summary types for two
separate ranges of azimuth, between 70 to 110 and 250 to 290 degrees.
Focusing types appear more frequently at easterly azimuths in agree-
ment with Figure 8.

5.  Relationship Between Types and Atmospheric Profile

In Paragraph 4 of this report, a system of types of sound speed
profiles has been discussed, the relationship to focusing derived, and
the seasonal and azimuthal variation delineated. The study would be
incomplete if no mentioning of the atmospheric profiles associated
with the types were made.

A diversified investigation would have taken more time than was

available for completion of this report. Therefore, only preliminary
results were obtained for some specified conditions. First, two
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Table V. Type Distribution fﬁ)r Easterly and Westerly Azimuths
(Nashville, Tennessee, 17 Local Time)

70 to 110 Degrees 250 to 290 Degrees
Focusing 29.3% 2. 4%
Nonfocusing 57.8% 96. 7%
Others 12.9% 0.9%

azimuth ranges were selected, easterly and westerly, similar to the
ranges for Table V. Further, a subdivision was made on B profiles
(with chances of focusing, see Table II) being present or absent for the
selected azimuth ranges. The resulting mean temperature, wind
speed and direction profiles were computed. This is exhibited in
Figure 10.

Although dispersion of the atmospheric conditions is disclosed for
all three elements, the separation in the mean wind direction profiles
is most striking. It expresses that B profiles (and associated acoustic
focusing) appear for easterly azimuths, if the wind direction is westerly.
B profiles for westerly azimuth, however, are more associated with
northerly winds. This confirms again the influence of the wind upon
acoustic focusing, discussed by the author in several other reports. 6
The mean wind direction was computed by methods derived by the author
as published previously”!® Compared with this mean difference, 60 to

17 8

90 degrees, the nonfocusing profiles show only a small separation in
the mean wind direction.

The wind speed is from 2 to 5 meters per second higher for weather
situations with focusing chances at easterly azimuths than it is for
westerly azimuths. This result is reasonable since, in general, west-
erly winds are stronger than easterly winds and westerly winds create
focusing conditions for easterly azimuths. The dispersion between the
average wind speed for B and no B profiles in the range between 70 to
110 degrees azimuth can be interpreted to mean that stronger winds
lead more to atmospheric conditions favorable to focusing than weaker
winds. This is supplemented by the temperature profiles, whose
gradient seems steeper in the cases of B profiles. Thus, wind and
temperature profiles support one another to create sound speed profiles
with an increase of the sound speed from the ground, which in turn lead
to returning rays and focusing or vice versa to generate conditions for
nonfocusing.
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6. Conclusions

In the preceeding study, it has been attempted to introduce a
workable scheme of classifying sound speed profiles into characteristic
types with an objective method where classes can be determined by
electronic computers. It has been shown that an objective scheme can
be developed based upon a representation of the sound speed profile
by orthogonal polynomials, the utilization of the so-called ''percentage
reduction' (Equation 9) and the maximum linear correlation coefficient
between the sound speed profile and the prototypes. A system of 32
types resulted for the climatic regime of the Southeast United States.

It proved sufficient also for atmospheric conditions in France. The
types were subdivided into three groups by their association with
acoustic wave propagation, namely without and with returning rays

from the atmosphere and with chances of acoustic focusing as a measure
of areas with high acoustic energy. The survey in Table II relates the
types and the three groups and provides data on frequency of occurrence
in the climatic regime of the Southeast United States.

The introduced types show significant relationship to focusing with
independence of focusing chances per type from azimuth, season, or
climatic regime (Table III). Thus, seasonal, azimuthal, and climatic
variations of focusing are associated with changes of types.

A preliminary survey of the relationship between the sound speed
profiles with and without chances of focusing and the atmospheric pro-
files of temperature, wind direction, and wind speed was given. The
results indicate a definite connection between the weather situation and
focusing which is also supported by results established in a recently
published reportl

The results would exceed the frame of this article if all details were
presented which were investigated during the establishment of the
classification system for sound speed profiles. More information can
be obtained in a forthcoming report?

Further, the present study refers only to acoustic focusing as a
source of areas with high acoustic energy. The statistics can certainly
be expanded to include other a2reas of high energy. Focusing was the
phenomena, however, through which a relative simple objective tool
could be developed in a reasonable time and which contains most of the

high intensity area.’
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More work is necessary to establish a closer relationship between
the sound speed profiles and the weather situation with the final goal
of relating acoustic parameters to the atmospheric profiles. The
classification system of sound profiles can then be considered as one
step towards that goal.

The object of this investigation was to develop a systematic classi-
fication scheme for sound speed profiles. Nothing speaks against the
application of the method to other meteorological parameters as long
as they can be fairly well represented by a limited number of orthogonal
polynomial terms. The limited number is desirable only to restrict
the sum of prototypes. Since the prototypes are based on the system
of the percentage reduction, which in the case of the sound speed pro-
files seem sufficiently large for the first terms, a combination of
smaller terms can be arranged which also makes the method applicable
to classification of weather maps.
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